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A fundamental question in human cognition is how people reason about space. We use a
computational model to explore cross-cultural commonalities and differences in spatial
cognition. Our model is based upon two hypotheses: (1) the structure-mapping model of
analogy can explain the visual comparisons used in spatial reasoning; and (2) qualitative,
structural representations are computed by people’s visual systems and used in these com-
parisons. We apply our model to a visual oddity task, in which individuals are shown an
array of two-dimensional images and asked to the pick the one that does not belong. This
task was previously used to evaluate understanding of geometric concepts in two disparate
populations: North Americans, and the Mundurukú, a South American indigenous group.
Our model automatically generates representations of each hand-segmented image and
compares them to solve the task. The model achieves human-level performance on this
task, and problems that are hard for the model are also difficult for people in both cultures.
Furthermore, ablation studies on the model suggest explanations for cross-cultural differ-
ences in terms of differences in spatial representations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A key question in cognition is how we represent and
reason about space. Dehaene, Izard, Pica, and Spelke
(2006) demonstrated that aspects of human reasoning
about two-dimensional space are universal, rather than
culturally-specific. They used an oddity task (Fig. 1), in
which participants were shown an array of six images
and asked to pick the image that did not belong. Solving
this task requires sensitivity to two-dimensional geometric
concepts such as parallel lines, right angles, and axial sym-
metry. Dehaene et al. compared the performance of two
population groups: North Americans and the Mundurukú,
a South American indigenous group. They found that while
the Americans performed better than the Mundurukú
overall, the Mundurukú performed above chance on nearly
. All rights reserved.
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all problems. Furthermore, the error patterns correlated
across cultures. Thus, the Mundurkú appeared to utilize
the same geometric concepts as the Americans, despite
having few words for such concepts in their language
and no formal schooling in geometry.

These results have been taken as evidence for core
knowledge of geometry (Spelke & Kinzler, 2007), an innate,
universal cognitive module that deals specifically with
geometric concepts. However, the performance of the
two groups was not identical: Mundurukú of all ages per-
formed at about the same level, while Americans tended to
improve over time (Newcombe & Uttal, 2006), suggesting
that culture-specific learning is a factor. Further research
is needed to determine which aspects of spatial cognition
are universal and which are learned. Here we use a compu-
tational model to study this task. Our model performs
similarly to both groups on the oddity task. By ablating dif-
ferent aspects of the model, we can cause it to perform
more like one group or the other, thereby producing novel,
testable hypotheses about how spatial cognition varies
across cultures.

http://dx.doi.org/10.1016/j.cognition.2011.06.012
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Fig. 1. Four oddity task problems from (Dehaene et al., 2006). Participants must pick the image that does not belong.
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Our model is based on three claims about human spatial
cognition. Firstly, we believe people use similar processes
for concrete visual comparisons and abstract analogical
comparisons. We model comparison as structure-mapping
(Gentner, 1983), a domain-general process of aligning
common relational structure. Although structure-mapping
was originally proposed to explain analogy, there is evi-
dence it may also be used in people’s visual comparisons
(Lovett, Gentner, Forbus, & Sagi, 2009; Lovett, Tomai,
Forbus, & Usher, 2009; Markman & Gentner, 1996). The
oddity task presents a further test of structure-mapping’s
generality.

Secondly, we believe that when possible, people use
qualitative or categorical representations of space (e.g.,
Biederman, 1987; Forbus, Nielsen, & Faltings, 1991; Kosslyn
et al., 1989), rather than quantitative or coordinate repre-
sentations, to capture how objects relate to each other in
a visual scene. These spatial representations are hierarchi-
cal (Hochstein & Ahissar, 2002; Palmer, 1977), capturing
both larger-scale relations between groups of objects, and
smaller-scale relations between parts of an individual
object. Solving the oddity task requires determining a gran-
ularity at which there is a salient qualitative difference be-
tween one image and the others.

Finally, we propose that differential performance across
cultures may be linked to differences in encoding of spatial
representations. Research suggests spatial representations
vary based on exposure to external artifacts such as lan-
guage (e.g., Haun, Rapold, Call, Janzen, & Levinson, 2006;
Hermer-Vazquez, Moffet, & Mukholm, 2001; Loewenstein
& Gentner, 1995). While the oddity task study demon-
strated the Mundurukú have many of the same geometric
concepts as Americans, there may be differences in when
and how they encode those concepts. Here, we make the
simplifying assumption of a single, broad set of concepts
available to both groups. We then test whether the groups
vary in how easily they can use certain concepts.

This paper describes a simulation of the oddity task that
operates over the stimuli used by Dehaene et al. (2006).
Our model automatically constructs qualitative spatial rep-
resentations and compares them via structure-mapping to
identify the odd image out. The model achieves results
comparable to human performance on this task, matches
the error patterns found in both Americans and
Mundurukú, and suggests explanations for cultural perfor-
mance differences based on different spatial encoding.
2. Method

Our model utilizes two pre-existing systems: the Struc-
ture-Mapping Engine (Falkenhainer, Forbus, & Gentner,
1989) for comparison, and CogSketch (Forbus, Usher,
Lovett, Lockwood, & Wetzel, 2008) for generating qualita-
tive spatial representations.
2.1. Model components

The Structure-Mapping Engine (SME) is a computa-
tional model of comparison based on Gentner’s (1983)
structure-mapping theory of analogy. Given two symbolic
representations, it compares them by aligning their com-
mon relational structure. It operates on structural descrip-
tions, symbolic representations consisting of entities,
attributes, and relations. Given two structural descriptions,
SME returns one or more mappings between them. Each
mapping consists of: (1) a set of correspondences between
elements in the two descriptions; (2) a structural evaluation
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score which estimates similarity based on the breadth and
depth of aligned structure; and (3) a set of candidate infer-
ences representing information that could be projected
from one description to the other, based on their aligned
structure. SME is useful because it can identify correspond-
ing elements in two representations, evaluate their simi-
larity, and identify differences between them (i.e., the
candidate inferences).

CogSketch (Forbus et al., 2008) is a sketch understand-
ing system. Given a two-dimensional sketch containing ob-
jects drawn by a user or imported from PowerPoint,
CogSketch constructs a qualitative representation of the
attributes of each object, as well as spatial relationships
between objects. Attributes include open vs. closed shapes,
or straight vs. curved, while relations include relative loca-
tion and containment. See Table 1 for the terms used in
this simulation. Note that some terms are orientation-spe-
cific, meaning they would change if an image rotated in
space. These include the orientation and relative location
of objects. We return to this distinction later.

On demand, CogSketch can generate representations at
three levels in a spatial hierarchy. The default is the Object
level. The lower level of Edges describes relations between
edges within an object. The higher level of Groups describes
relations between groups of objects. The Edges level is
computed by segmenting a shape into its component edges
(see Lovett, Tomai, et al., 2009) and identifying qualitative
spatial relations between the edges (see Table 2 for a full
list, and Lovett & Forbus, 2010 for a discussion).

The Groups level is computed by grouping objects
together based on similarity and proximity—that is, objects
should be similar in size and shape and equidistant from
each other. Objects must also be axis-aligned (Palmer,
1980)—that is, the line connecting two objects should align
with their axes of elongation or symmetry. The Group
qualitative vocabulary is similar to the Object vocabulary
(Table 1), and if no groups are found, a Group-level repre-
sentation will be identical to an Object-level one.
Table 1
Qualitative vocabulary for Objects and Groups (Terms marked with an ‘‘O’’ are orie

Basic Attributes Edge-Based Attributesa Symm

� 2D-Shape-Generic � 2D-Shape-Convex � Sym
� 2D-Shape-Open/Closed � 2D-Shape-Curved/Straight/Ellipse � Perp
� 2D-Shape-Forked � 2D-Shape-Axis-AlignedO � Mu
� 2D-Shape-ObliqueO � 2D-Shape-Perpendicular � Full
� VerticalEdge/HorizontalEdgeO � Non
� Dot-Shape

Color/Texture Attributes
� (ObjectsColoredFn color)
� (ObjectsBorderColoredFn color)
� TexturedObject

Spatial Relations Alignment R

� rightOf/aboveO � parallelEle
� onRightHalfOf/onLeftHalfOf O � perpendic
� onTopHalfOf/OnBottonHalfOf O � collinearE
� elementsIntersect � centeredO
� elementsOverlap
� elementContains

a Edge-based attributes are encoded when a feature (such as being straight, o
object.
There are two Object level features that can only be
computed by comparing Edge level representations. Firstly,
the model uses SME to identify transformations between
two objects’ shapes, by comparing their edge-level repre-
sentations to determine if there is a rotation or reflection
between them. Thus we use structure-mapping to model
mental rotation (Lovett, Tomai, et al., 2009; Shepard &
Metzler, 1971).

Using a similar approach (Ferguson, 1994), the model
compares an object’s edge-level representation to itself
to identify axes of symmetry, such as those found in
Fig. 1D. The model distinguishes between four types of
symmetry based on the number and orientation of any
axes of symmetry found (Table 1). Additionally, when
no axial symmetry is detected, an object may be classified
as Non-Elongated if it lacks an axis of elongation (Sekuler,
1996). This feature may be seen as a crude measure of
symmetry, since many regular, symmetric shapes lack
an axis of elongation (circles, squares, equilateral trian-
gles, etc).

2.2. Oddity task model

The operation of the model is as follows (Fig. 2):

(1) Using CogSketch, encode qualitative spatial repre-
sentations for each image at a given level in the spa-
tial hierarchy. The model always begins at the
highest level of Groups (Hochstein & Ahissar,
2002). Thus, the dots in Fig. 1C would be grouped
together and treated as a single element.

(2) Using the Structure-Mapping Engine, compare half
the images to determine what is constant across
them. This happens in two steps: (A) Compare the
images looking for differences. Specifically, if there
are differences in any orientation-specific features
(see Tables 1 and 2), such as relative location, then
filter out all orientation-specific features. This
ntation-specific).

etry Attributes Location Attributes

metric-Shape � Centered-Element
endicular-Symmetric-Shape � OnTop-Element/OnBottom-Element O

ltiply-Symmetric-Shape
y-Symmetric-Shape � OnRight-Element/OnLeft-ElementO

-Elongated-Shape

elations Transformation Relations

ments � reflectedShapes-XAxis
ularElements � reflectedShapes-YAxis
lements � reflectedShapes
n � rotatedShapes-90

� rotatedShapes-180
� rotatedShapes

r having perpendicular corners, see Table 2) holds for every edge in the



Table 2
Qualitative vocabulary for edges (Edge Cycle Relations are higher-order relations encoded between edges in a cycle).

Attributes Simple Edge Relations Edge Cycle Relations

� PerceptualEdge � edgesPerpendicular � convex/concaveAngleBetweenEdges
� StraightEdge/CurvedEdge/EllipseEdge � edgesParallel � cycleAdjacentAngles
� Length (Tiny/Short/Medium/Long) � edgesCollinear � adjacentAcuteToObtuseAngles/adjacentObtuseToAcuteAngles

� edgesCurveCompatible � perpendicularCorner
� edgeCurveCompatibleWith � parallelEdgeRelation
� elementsConnected � collinearEdgeRelation
� elementsIntersect
� elementIntersects

Orientation-Specific Terms
� VerticalEdge � rightOf/above � leftToRightCorner/rightToLeftCorner/topToBottomCorner/bottomToTopCorner
� HorizontalEdge � verticallyOrientedCorner/horizontallyOrientedCorner
� ObliqueEdge-Upward/Downward
� CurvedEdge-Right/Left/Up/Down Bumped
� axisAligned

Fig. 2. Flowchart of the computational model.
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simulates the decision to not worry about orienta-
tion on problems like Fig. 1B, where the relative
location of the lines is irrelevant. (B) Construct an
analogical generalization (Kuehne, Forbus, Gentner,
& Quinn, 2000) over the images. An analogical gen-
eralization is built by comparing the images and
abstracting out features that fail to align, leaving
only the features found in all images.

(3) Compare each remaining image to the generalization
to find the least similar image. For example, in
Fig. 1A, a generalization over the top row would indi-
cate that every image contains a right angle between
two edges. The lower middle image lacks this right
angle, so it is less similar to the generalization.
(4) Because the model does not know where the odd
image out will be, it always performs steps (2 and
3) twice, first generalizing across the top row and
then generalizing across the bottom row.

(5) If no solution is found, make a strategy shift. Either
drop the representation level from Groups down to
Edges, or change the similarity metric. The default
similarity metric seeks drops in similarity which
indicate that an image lacks a feature of the general-
ization. The alternate metric seeks an image that has
an extra feature beyond the generalization.

Fig. 1A requires switching from the Group level to the
Edge level to notice that all the images but one contain a
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right angle, whereas 1B requires switching similarity met-
rics to notice that only one image contains parallel
elements.

2.3. Possible sources of cultural variation

Recall one of our claims is that cultural groups may
vary in how they encode spatial concepts. Based on our
model, we identified four factors that might be culturally
dependent. Firstly, cultures might vary in their ability to
join objects up into Groups or segment objects down into
Edges. Secondly, cultures might have difficulties with two
types of features at the Object level: Shape Transforma-
tions, and Shape Symmetry. In our model, these features
require extra effort to compute, as the objects must be
compared at the edge level. These four factors represent
a hypothesis space for evaluating cultural differences. Of
course, this is only a first pass; many other factors may
play a role.

2.4. Materials

Our simulation used the stimuli from (Dehaene et al.,
2006) as input. The original experimenters provided
PowerPoint slides with 41 of the 45 stimuli, and we
recreated the other four before importing the 45 slides
into CogSketch. One problem was touched up in Power-
Point: separate parts of a shape were redrawn as a single
shape. Additionally, five were altered in CogSketch: extra
lines meant to draw the participant’s attention to a
particular feature were removed, since CogSketch cannot
use this information. Aside from these minor changes,
all stimuli were identical to those used in the original
study. These stimuli were hand-segmented, in the sense
that CogSketch treated each PowerPoint shape as a
separate object, rather than automatically finding objects
in the visual scene. However, CogSketch automatically
identified edges and groups while generating represen-
tations.
Table 3
Accuracy of the model and average accuracy of each
population group on the 45 oddity task problems.

Accuracy

Model 0.87
Young children 0.55
Older children 0.75
Adults 0.83
Mundurukú 0.67

Table 4
Correlations in accuracy on each of the 45 problems (Pearson’s r).

Model Young children

Model 1 .58
Young children .58 1
Older children .66 .91
Adults .77 .84
Mundurukú .49 .83

Note: All correlations are significant (p < .05).
2.5. Participants

We compared the model’s performance to participants
from (Dehaene et al., 2006), considering only participants
for whom complete data was available. The four groups
considered were 40 young children (Americans, aged
4–8 years, mean = 6.12 years, 24 female/16 male), 64 older
children (Americans, aged 8–12 years, mean = 10.40 years,
33 female/31 male), 47 adults (Americans, aged 18–52,
mean = 26.41 years, 28 female/19 male), and 44 Mund-
urukú (aged 5–83 years, mean = 37.73 years, 24 female/
20 male). We collapsed across all ages for the Mundurukú
because Dehaene et al. found no age-related differences in
Mundurukú performance.
3. Results

Overall, the model correctly solved 39/45 problems, or
87%. This places it above the average performance for the
human populations (see Table 3), demonstrating that the
model was sufficient for performing the task. Table 4
shows the correlations between the model’s accuracy and
the accuracy of each population group across the 45 prob-
lems, as well as correlations between groups. The model’s
performance correlated significantly with all groups
(p < .05), suggesting that the problems on which the model
failed were also difficult for human participants. The model
had the highest correlation with American adults (r = .77),
and the lowest correlation with the Mundurukú (r = .49).

To explore the relationship between the model’s perfor-
mance and human error patterns, we ranked each of the
problems according to how difficult it was for a given
group, such that 1 indicated the easiest problem for that
group and 45 indicated the most difficult. We then consid-
ered each group’s rankings for the six problems on which
the model failed (see Table 5). For all groups, the median
ranking was 41 or above. For all three American groups,
the minimum rank was above 30/45, meaning all six prob-
lems were difficult for those groups. For the Mundurukú,
Older children Adults Mundurukú

.66 .77 .49

.91 .84 .83
1 .94 .75
.94 1 .72
.75 .72 1

Table 5
Rankings of the six problems the model fails to solve (1 = easiest for a
group, 45 = hardest).

Median rank Min rank Max rank

Young children 41.5 34 45
Older children 42 33 45
Adults 42.5 37 45
Mundurukú 41 12 44



Fig. 3. One of six problems the model fails to solve. Average human
performance: 68% (American adults), 86% (Mundurukú).
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one problem ranked much lower (12/45). This problem
(Fig. 3) is unique in that it was difficult for both the model
and the Americans, but relatively easy for the Mundurukú.

What can the model tell us about the representations
each group uses? As described above, we identified four
factors that might contribute to difficulty: Groups, Edges,
Shape Transformation, and Shape Symmetry. Restricting
our analysis to the 39 problems the model solved, we
scored each problem for whether it required each factor.
This was done via ablation, selectively removing the mod-
el’s ability to perform an operation and identifying the
problems which it was no longer able to solve. When
Groups were ablated, the model built representations at
the Object level instead. When Symmetry was ablated,
the model never computed axial symmetry, but it still
identified Non-Elongated shapes.

We built linear models for each group, using the four
factors as independent variables (Table 6). All four linear
models have R2 values of around .5, indicating they account
for about half the variance in human performance. Impor-
tantly, there are differences in which factors contribute
significantly to each group’s model. In particular, the Edges
Table 6
Linear models for each group’s accuracy (shaded cells are factors making statistic

Notes. All linear models have a significant correlation with their respective grou
⁄p = .058.

Table 7
Linear models for each group’s reaction time (shaded cells are factors making sta

Note. All linear models have a significant correlation with their respective group
factor contributes significantly to two of the three Ameri-
can models (young children and older children), and is
marginally significant (p = .058) in the third model
(adults). In contrast, the Groups factor contributes signifi-
cantly in the Mundurukú model. Thus, Americans ap-
peared to have greater difficulty on those problems
which required focusing on the individual edges of objects,
rather than the objects as a whole (e.g., Fig. 1A), whereas
the Mundurukú had greater difficulty on problems that re-
quired looking at overall configurations of objects (e.g.,
Fig. 1C).

The other difference may be related: whereas all groups
had greater difficulty on problems involving Shape Trans-
formation, only the Americans had difficulty on problems
involving Shape Symmetry. These problems (e.g., Fig. 1D),
appear to require a close consideration of the edges.

Finally, we built linear models for the average reaction
times of each group. This analysis was restricted to the
three American groups, as precise timing data was unavail-
able for the Mundurukú. It was also restricted to 37 of the
39 problems, since the first two were used in (Dehaene
et al., 2006) as training problems. We considered only cor-
rect responses.

The results (Table 7) show a clear split between the
young children and the other groups. The model for the
young children, while a marginally significant predictor
(p = .052), accounts for substantially less of the variance
than the models for the older children and adults. This
may be because the younger children were less systematic
or more easily distracted while performing the task.

The timing models for the older children and adults
both account for over half the variance. Every factor is a
significant contributor. This suggests that objects are the
most basic level for American representations of two-
dimensional space. Participants required more time on
problems that involved working with a different level of
representation (Groups or Edges). They also required more
time on problems involving Shape Transformation or
Shape Symmetry, confirming our model’s prediction that
these features require additional operations.
ally significant contributions, p < .05).

ps (p < .05).

tistically significant contributions, p < .05).

s (p < .05) except young children (p = .052).
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4. Discussion

Our simulation shows that structure-mapping com-
bined with a hierarchical, qualitative representation of
space is sufficient for achieving human-level performance
on the oddity task, given hand-segmented images. The cor-
relation between human and model error patterns further
supports the generality of our model, which has been used
to simulate other visual comparison tasks (Lovett, Gentner,
et al., 2009; Lovett, Tomai, et al., 2009).

While our model demonstrates that some spatial rea-
soning can be accomplished with qualitative representa-
tions, people also utilize quantitative information. It is
possible that the Mundurukú and young American chil-
dren, whose performance correlated least with the model,
relied more on quantitative information, perhaps because
of less familiarity with the words for various geometric
concepts. Exploring the interaction between qualitative
and quantitative representations is one important avenue
for future research.

Our simulations suggest cultural differences in spatial
cognition may manifest as differences in representational
focus (Nisbett & Masuda, 2003; Nisbett & Miyamoto,
2005). Americans are biased to focus first on individual ob-
jects, leading to greater difficulty reasoning about the
edges within an object. The Mundurukú, in contrast, do
well with edges or objects, but have more difficulty consid-
ering entire groups of objects. Indeed, the impressive per-
formance of the Mundurukú on one problem that was
difficult for both the Americans and our model (Fig. 3) sug-
gests they may divide up space to consider even quadrants
within a single edge.

One possible reason for this cultural difference is that
formal schooling in geometry, and the many shape names
in the English language, might focus Americans on shapes
when they consider visual scenes. The Mundurukú, lacking
such exposure to formal geometric concepts, may be more
inclined to focus on the parts that make up a shape. Under-
standing these cultural differences and how they arise,
using a combination of psychological and computational
studies, will help shed light on what is universal versus
not in human spatial cognition.
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